Soft nanofluidic transport in a soap film.
نویسندگان
چکیده
We investigate experimentally the electrokinetic properties of soft nanofluidic channels that consist in soap films with nanometric thickness, covered with charged surfactants. Both the electric and fluidic responses of the system are measured under an applied voltage drop along the film. The electric field is shown to induce an electro-osmotic hydrodynamic flow in the film. However, in contrast to systems confined between solid surfaces, the soft nature of the nanochannel results furthermore in a thickening of the film. This effect accordingly increases the total electro-osmotic flow rate, which behaves nonlinearly with the applied electric field. This behavior is rationalized in terms of an analogy with a Landau-Levich film withdrawn from a reservoir, with the driving velocity identified here with the electro-osmotic one.
منابع مشابه
Surfactant-induced rigidity of interfaces: a unified approach to free and dip-coated films.
The behavior of thin liquid films is known to be strongly affected by the presence of surfactants at the interfaces. The detailed mechanism by which the latter enhance film stability is still a matter of debate, in particular concerning the influence of surface elastic effects on the hydrodynamic boundary condition at the liquid/air interfaces. In the present work, "twin" hydrodynamic models ne...
متن کاملPoisson-Nernst-Planck model of ion current rectification through a nanofluidic diode.
We have investigated ion current rectification properties of a recently prepared bipolar nanofluidic diode. This device is based on a single conically shaped nanopore in a polymer film whose pore walls contain a sharp boundary between positively and negatively charged regions. A semiquantitative model that employs Poisson and Nernst-Planck equations predicts current-voltage curves as well as io...
متن کاملSingle thermal plume in locally heated vertical soap films.
A vertical soap film is maintained by injection of a soap solution from the top. The film is then locally heated. Thermal plumes may be observed to rise in the film, depending on the magnitude of the heating and injected flows. The nearly two-dimensional nature of the system allows to visualize the motion of the plumes using an infrared camera. A model is proposed to describe the growth, emerge...
متن کاملGraphene-Based Planar Nanofluidic Rectifiers
Structurally symmetric two-dimensional multilayered graphene oxide films, which facilitate ion transport through “nanochannels” comprising the interstitial spaces between each stacked sheet within the film, are for the first time shown to exhibit peculiar ion current rectification and nonlinear current− voltage characteristics below a critical electrolyte concentration when the interstitial spa...
متن کاملEnhanced Ion Current Rectification in 2D Graphene‐Based Nanofluidic Devices
Furthering the promise of graphene-based planar nanofluidic devices as flexible, robust, low cost, and facile large-scale alternatives to conventional nanochannels for ion transport, we show how the nonlinear current-voltage (I-V) characteristics and ion current rectification in these platforms can be enhanced by increasing the system asymmetry. Asymmetric cuts made to the 2D multilayered graph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 110 5 شماره
صفحات -
تاریخ انتشار 2013